Dating website geology

Methods for relative dating were developed when geology first emerged as a natural science. Geologists still use the following principles today as a means to provide information about geologic history and the timing of geologic events. The principle of uniformitarianism states that the geologic processes observed in operation that modify the Earth's crust at present have worked in much the same way over geologic time. The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock.

Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes.

The principle of cross-cutting relationships pertains to the formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether the fault is a normal fault or a thrust fault. The principle of inclusions and components states that, with sedimentary rocks, if inclusions or clasts are found in a formation, then the inclusions must be older than the formation that contains them.

For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found.

These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in the matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds.

Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization although cross-bedding is inclined, the overall orientation of cross-bedded units is horizontal. The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited.

This principle allows sedimentary layers to be viewed as a form of vertical time line, a partial or complete record of the time elapsed from deposition of the lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or sometimes absence provides a relative age of the formations where they appear.

Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution , the principles of succession developed independently of evolutionary thought.

A Brief History of Geologic Time

The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat facies change in sedimentary strata , and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods.

At the beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geologic events using radioactive isotopes and other methods. This changed the understanding of geologic time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another.

With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there was datable material, converting the old relative ages into new absolute ages. For many geologic applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice.

Common methods include uranium-lead dating , potassium-argon dating , argon-argon dating and uranium-thorium dating. These methods are used for a variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within the crust, the uplift of mountain ranges, and paleotopography.

Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating is used for geologically young materials containing organic carbon. The geology of an area changes through time as rock units are deposited and inserted, and deformational processes change their shapes and locations.

Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock. Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket the surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side strike-slip motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates.

When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this is accomplished in two primary ways: In the shallow crust, where brittle deformation can occur, thrust faults form, which causes deeper rock to move on top of shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones.

Movement along faults can result in folding, either because the faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ".

If the tops of the rock units within the folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms and synforms.

Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of the rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks.

Absolute dating

Extension causes the rock units as a whole to become longer and thinner. This is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units.

Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over a length of less than a meter.

Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely.

The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in the creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment, and continues to create accommodation space for the material to deposit.

Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on the surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano.

All of these processes do not necessarily occur in a single environment, and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In the southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded.

Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is undiscernable without laboratory analysis. In addition, these processes can occur in stages. In many places, the Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited.

Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use a number of field, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth.

In typical geological investigations, geologists use primary information related to petrology the study of rocks , stratigraphy the study of sedimentary layers , and structural geology the study of positions of rock units and their deformation. In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate the subsurface.

Sub-specialities of geology may distinguish endogenous and exogenous geology.

Geology Online Subchapter

Geological field work varies depending on the task at hand. Typical fieldwork could consist of:. In addition to identifying rocks in the field lithology , petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe. In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using a petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens.

Navigation menu

Petrologists can also use fluid inclusion data [31] and perform high temperature and pressure physical experiments [32] to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous [33] and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. Structural geologists use microscopic analysis of oriented thin sections of geologic samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks.

They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct the history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings.

The analysis of structures is often accomplished by plotting the orientations of various features onto stereonets.